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Previous methods for planning clothoid based continuous curvature paths aim at min-
imizing path length. However, minimal length paths are not always smooth, natural, and
drivable. We discuss a method of generating clothoid-based trajectories using constructive
polylines. The goal of the motion planner is to create a path for a large car-like vehicle in
human driving environments, thus, the trajectories must be smooth, drivable, and natural
enough to be used on roadways. We show several examples of trajectories developed for a
DARPA Urban Challenge vehicle.

Nomenclature
κ curvature, dθ/ds

α sharpness, dκ/ds

s distance along a clothoid
L length along a curve
λ angle of circular arc (radians)
δ change of heading (deflection); for a single clothoid: δ = φ − θ0, (radians)
ψ0 angle from initial heading to d , (radians)
ψf angle from d to final heading, (radians)
ϕ angle from initial point to final point (along d) (radians)
θ angle of heading with 0 along x-axis (radians)
η change of angle between adjacent polylines, (θf − θ0)/2, (radians)
C0 complex number in x-y plane, x0 + iy0

C(s) Fresnel cosine
S(s) Fresnel sine
F(s) complex clothoid
A, B angles of triangles, (radians)
a, b sides of triangles
d length of line between initial and final points
d1 polyline for a clothoid curve
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d2 polyline used to scale clothoid curve
d3 polyline for a circular arc
r radius of circular arc, r = 1/κ

Subscripts
( )max maximum
( )0 initial
( )f final
( )c values pertaining to a clothoid

I. Introduction and Motivation

MOTION planning has been defined as the study of open loop controls that steer a mobile robot from a spec-
ified initial state to a specified final state over a certain time interval.1 Motion planning can be done by

constructing trajectories that have steering controls (curvature and sharpness) as well as velocity controls (velocity
and acceleration/deceleration) embedded in the data structure of the trajectory.

Paths that are called “optimal paths” in the previous literature refer to minimal length paths. Dubins showed that a
length-optimal path connecting an initial state and a final state of a mobile robot consists of only straight line segments
and circular arc segments of maximal allowable curvature.2 Reeds and Shepp gave a complete characterization of
possible shortest paths.3 They extended Dubins work by adding cusps (reversals in travel direction) to their paths,
and they enumerated the possible types of optimal paths showing that an optimal path required no more than five
segments and no more than two direction reversals. Fraichard and Sheuer showed that under the continuous curvature
assumption that near optimal paths consist of straight lines, circular arc segments of maximal allowable curvature,
and clothoid curves.4 These curves have maximum allowable sharpness (i.e., change of curvature with respect to
distance traveled) and are used to connect the straight-line segments to the circular arc segments. Fraichard and
Sheuer paths are near optimal and within 10% of the length of Reeds and Shepp paths.4

Our motivation is to generate a smooth, natural, drivable trajectory between two points and then determine the max-
imum velocity, and hence minimize travel time along the trajectory. Since time-optimal trajectories do not necessarily
require that mobile robots perform turns at maximal sharpness and curvature, we have been investigating methods
for constructing continuous curvature trajectories where the curvature and sharpness are left as variables. Therefore,
instead of constructing paths/trajectories from maximal curvature circular arcs, maximal sharpness clothoids, and
line segments, we are investigating a new method for computing trajectories based on constructive polylines that
allows us to compute curvature and sharpness of the trajectory as a function of the distance traveled and the headings.

In our method, a trajectory is computed using constructive polylines. These polylines connect the points where
the curvature of the trajectory is zero, which includes straight lines and inflection points. Furthermore, the polylines
under curves are subdivided at the point where the trajectory is parallel to the construction line as shown Fig. 1.
These construction polylines are defined and used differently than the control lines used by Walton and Meek to draw
clothoid arcs in a graphic editor.5

Section II describes an important primitive method, called “Clothoid_Turn,” used for motion planning trajectories
described by constructive polylines as we have proposed. To motion plan a curve (Fig. 2(a)), you simply need to
know (1.) the length d of the polyline segment, and (2.) the heading deflection δ, which is also the angle at which

Fig. 1 (a) A trajectory and the associated constructive polyline. (b) The curvature plot for the trajectory on the left.
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Fig. 2 (a) Clothoid segment given heading deflection δ and polyline length d. (b) Clothoid/arc segment given heading
deflection δ and polyline length d. (c) Curvature diagram for clothoid segment with arc-length L, final curvature κ ,
and sharpness (slope) α. (d) Curvature diagram for clothoid/arc segment with arc-length L, final curvature κ , and
sharpness (slope) α.

Fig. 3 (a) Symmetric curve. (b) Asymmetric curve. (c) Symmetric curvature diagram. (d) Asymmetric curvature
diagram.

the curve is incident to the polyline. The method then computes the arc-length L, the final curvature κ , and the
sharpness α (Fig. 2(c)). If a maximum curvature κmax is specified, then two types of curves can be generated. If the
final curvature is less than or equal to the maximum curvature κmax then a simple clothoid (Fig. 2(a) and 2(c)) is
generated, otherwise, a combination clothoid/arc curve is generated (Fig. 2(b) and 2(d)).

This method only really plans half of a curve. If the curve is symmetric (Fig 3(a) and 3(c)), then a single call to
the clothoid turn method plans both halves of the curve, and d = Length(polyline)/2. If the curve is asymmetric
(Fig. 3(b) and 3(d)), then two calls to the clothoid turn method must be made, where d1 + d2 = Length(polyline).
A curve of two clothoids that begins and ends with zero curvature is called a clothoid set.

II. Clothoid Equations and Planning a Basic Clothoid Curve
Clothoids are curves with continuous increasing/decreasing linear curvature and are defined in the complex plane

by Eq. (1) which is derived by Kimia et al.6

F(s) = C0 + sign(α)

√
π

|α|e
i(θ0−(κ2

0 /2α))

[
C

(
κ0 + αs√

π |α|
)

− C

(
κ0√
π |α|

)
+ iS

(
κ0 + αs√

π |α|
)

− iS

(
κ0√
π |α|

)]
, α �= 0

(1)

The Fresnel sine and cosine are defined as:

C(s) =
∫ s

0
cos

(π

2
u2

)
du (2)
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S(s) =
∫ s

0
sin

(π

2
u2

)
du (3)

Equation (1) is valid for all clothoids except where α = 0 which is the case for straight lines and circular arcs.
To simplify our analysis it is assumed that the initial and final points of a clothoid sets will begin and end with zero
curvature, κ0 = 0 (Fig. 3(c) and 3(d)). In essence, this means that the vehicle’s wheels must be straight upon entering
or exiting a trajectory. Assuming κ0 = 0 greatly simplifies the process of creating continuous curvature trajectories
by allowing the catenation of arbitrary clothoid sets and straight-line segments. If the vehicle exits a trajectory with
non-zero curvature, an additional clothoid must be added in order to create a continuous curvature trajectory that can
connect to a straight line. However, if the vehicle exits a trajectory with zero curvature then it may enter a tangential
straight-line segment without needing to add additional clothoids for the transition.

Without loss of generality, a trajectory can be computed for the normal case θ0 = 0 and C0 = 0, and then rotated
and translated into its correct orientation. Section II.B further explains the process of rotating and translating a
clothoid curve.

After applying the assumptions of κ0 = 0, θ0 = 0, and C0 = 0, Eq. (1) reduces to Eq. (4).

F(s) =
√

π

|α|
[

sign(α)C

(
αs√
π |α|

)
+ iS

(
αs√
π |α|

)]
, α �= 0 (4)

Although Eq. (4) has been significantly reduced from Eq. (1), it is stated only in terms of the unknown curve
length, s, and sharpness, α. For our motion planner we assume that the only knowns to the trajectory planner are the
initial and final points and their associated headings, θ0 and θf . Therefore, the length, curvature, and sharpness of the
desired clothoid for the trajectory are not inputs. The change in heading, also known as deflection4 (δ = θf − θ0),
can be easily computed from the initial and final points. To derive the primitive clothoid turn method referred to in
the introduction; rewrite Eq. (4) in terms of δ and κ , Eq. (9), instead of s and α. The derivation for Eq. (9) is given
below.

A curvature diagram showing the curvature, κ , with respect to the distance along the curve, s, (Fig. 4(a)) is a
convenient diagram to work with because it visually shows all aspects of a clothoid, except position: curvature
(vertical axis), sharpness (slope), length (horizontal axis), and change of heading (area under the curve). Figure 4
shows a clothoid in the s-κ domain and the x-y domain. From Fig. 4a, the relationships between variables δ and κ

and variables s and α are visible (Eqs. (5)).

κ = αs, δ = αs2

2
, α = 2δ

κ2
(5)

Fig. 4 (a) A clothoid in s-κ domain. (b) A clothiod in x-y domain.
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Using the Eq. (5) the inner terms of the Fresnel integrals in Eq. (4) are put into terms of δ.

αs√
π |α| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α > 0:
√

α2s2

πα
=

√
αs2

π
=

√
2δ

π

α < 0: (−1)

√
(−α)2s2

π(−α)
= (−1)

√
(−α)s2

π
= (−1)

√
2(−δ)

π

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= δ

|δ|
√

2|δ|
π

= sign(δ)

√
2|δ|
π

(6)

Next, perform change of variables on the constant term in front of the Fresnel equations in Eq. (4) to terms of δ and
κ by using the same Eq. (5).

√
π

|α| =

⎧⎪⎪⎨
⎪⎪⎩

α > 0:
√

π

α
=

√
2πδ

κ

α < 0:
√

π

−α
=

√
2π(−δ)

−κ

⎫⎪⎪⎬
⎪⎪⎭ =

√
δ

|α| =
√

2π |δ|
|κ| (7)

For a single clothoid beginning with zero curvature as shown in Fig. 4,

sign(α) = α

|α| = κ

|κ| = δ

|δ| = sign(δ). (8)

Substituting Eqs. (6)–(8) into Eq. (4), the final transformed clothoid equation is

F

(
2δ

κ

)
=

√
2π |δ|
|κ|

[
C

(√
2|δ|
π

)
+ sign(δ)iS

(√
2|δ|
π

)]
. (9)

A. Translating Clothoid Equation to the x and y Plane
To translate Eq. (9) from the complex plane to the x and y plane, let

F

(
2δ

κ

)
= x

(
2δ

κ

)
+ iy

(
2δ

κ

)
(10)

where

x

(
2δ

κ

)
=

√
2π |δ|
|κ| C

(√
2|δ|
π

)
(11)

y

(
2δ

κ

)
= sign(δ)

√
2π |δ|
|κ| S

(√
2|δ|
π

)
. (12)

An important and key observation from Eqs. (11) and (12) is that κ determines the size of the clothoid and δ

determines the shape of the clothoid. Therefore, pull κ out of Eqs. (11) and (12) and use it to scale the size of the
clothoid without altering the shape of the clothoid.

x

(
2δ

κ

)
= 1

|κ|x(2δ) (13)

y

(
2δ

κ

)
= 1

|κ|y(2δ) (14)

where the shape of the clothoid is determined by

x(2δ) = √
2π |δ| C

(√
2|δ|
π

)
(15)

y(2δ) = sign(δ)
√

2π |δ| S
(√

2|δ|
π

)
. (16)
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Fig. 5 Clothoid scaling. (a) Clothoid for when κ = 1. (b) Clothoid scaled by 1/|κ|.

B. Rotating and Scaling Clothoids
The rotating and scaling of clothoids is a key result of this paper and the basis of the proposed method to construct

trajectories. Figure 5 shows similar clothoids where Fig. 5(a) is produced from Eqs. (15) and (16) and Fig. 5(b) is
produced from Eqs. (11) and (12). Equations (13) and (14) describe the relationship between the two figures. Because
the clothoids in Fig. 5 are similar, they share the same initial and final headings and deflection. However, x, y, d2,
and the length of the curve are all scaled linearly with 1/|κ|. Thus, the distance between the beginning and ending
points in Fig. 5(b) can be spanned by scaling the clothoid in Fig. 5(a).

1. Rotating and Scaling Algorithm
To scale and rotate a clothoid first let κ = 1 and compute x(2δ) and y(2δ) which are functions of only δ. Next,

rotate x(2δ), y(2δ) by −δ; the x-component of the resulting point is d2 in Eq. (17).

d2 = cos(δ)x(2δ) + sin(δ)y(2δ) (17)

As described in the next section, the distance d1 in Fig. 5(b) is computed by Eq. (20). After computing both d1

and d2 the curvature, κ , can be computed from Eq. (18).

κ = sign(δ)
d2

d1
(18)

Once κ is computed, the length and sharpness of the scaled clothoid (Fig. 5(b)) can be found using Eq. (19). The
result is a clothoid turn with the desired length and change of heading. The clothoid turn algorithm with inputs d1

and δ and outputs κ , α and L can be seen if Fig. 6.

α = κ2

2δ
, L = κ

α
(19)

III. Constructing Trajectories Using Clothoids, Arcs, and Lines
Trajectories between two points begin and end with zero curvature and consist of a combination of straight lines,

arcs, and clothoid turns. The most basic trajectory consists of a single straight line. The next most basic trajectory
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Fig. 6 Clothoid turn algorithm. Outputs of the algorithm are κ , α, and L.

Fig. 7 (a) Symmetric clothoid set with unconstrained curvature in s-κ plane. (b) Symmetric clothoid set in the x-y
plane.

consists of two clothoids of the same sharpness, the second clothoid mirroring the first (Fig. 7) is called a symmetric
clothoid set. To create a basic symmetric clothoid set choose d1 such that

d1 =
√

(xf − x0)2 + (yf − y0)2

2
. (20)

A d1 from Eq. (20) creates a clothoid turn that covers half the distance between the initial and final points. Mirroring
the clothoid covers the second half of the distance and a trajectory is created (Fig. 7).

A clothoid set is a basic trajectory because it is based on a single construction polyline and begins and ends with
zero curvature. At this point, we expand the definition of a clothoid set to include an optional arc. Adding an arc
to a clothoid set creates the same type of trajectory as in Fig. 7 but with upper-bounded curvature. This extended
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Fig. 8 (a) Clothoid set with an arc to constrain curvature in the s-κ plane. (b) A clothoid set with inserted arc in the
x-y plane. Note that d1 is less than the d1 in Eq. (20), and d3 makes up the remaining distance to the halfway point
between the initial and final points of the desired trajectory. Lc is the length of the clothoid and Larc is the length
of the arc. The angle of the arc, λ (i.e. the change of heading of the arc), is a part of the change of heading of half
the trajectory.

Fig. 9 (a) A trajectory with two clothoids of different sharpness and an arc to constrain curvature in the s-κ plane.
(b) A trajectory with two clothoids of different sharpness and inserted arc in the x-y plane.

definition of a clothoid set is similar to a “CC-Turn” by Fraichard and Scheuer4 except it is not required to have
maximum sharpness and curvature.

Developing a clothoid set with an arc is similar to the process of creating a clothoid set without an arc. To develop
a symmetric clothoid set, first create a clothoid with a maximum curvature of κmax. Then add an arc to finish the
remaining half of the distance between the beginning and ending points. The arc is then mirrored and a mirror of the
first clothoid is added on the end (Fig. 8).

It should be noted that choosing d1 to be half the distance between the initial and final points is not required, but
it is a simple and effective solution. The same principles of trajectory generation apply to asymmetric clothoid sets
(Fig. 9).

IV. Application of Trajectories
This section discusses some trajectories created for common driving maneuvers of a DARPA Urban Challenge

vehicle using clothoid-arc sets and lines. Each of the trajectories follow the specifications that a trajectory begins
and ends with zero curvature, the vehicle’s minimum turning radius (i.e., maximum curvature, κmax) is not violated,
and the only information given to the system are the initial and final points and their associated headings.

A. Generic Turn Trajectory
The goal of the generic turn method is to create a trajectory between any two given points with any two headings,

assuming there is sufficient distance between the points that a trajectory can be created within the constraints stated
in the introduction of this section. Figure 10 shows a generic turn in the s-κ plane and in the x-y plane. To create
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Fig. 10 (a) Generic turn trajectory in the s-κ plane. (b) Generic turn trajectory in the x-y plane (note that d here
is different from d in Fig. 9b).

a trajectory between points x0, y0 and xf , yf , the lengths of polylines a and b, and the deflection angles δ0 and δf
must be computed. The only input variables of the system are θ0, θf , x0, y0, xf , and yf . From these inputs, values for
ψ0, ψf , η, ϕ, and d are found using Eqs. (24), (25), (26), (21), and (20), respectively. It is important to note that half
of the lengths of a and b will replace d in Fig. 8(b) of the clothoid turn. Using the geometry in Fig. 10(b), equations
for constructive polylines a and b are derived using the Law of Sines. Equations (21)–(26) are also obtained from
the figure and are used to compute values for angles δ0 and δf .

ϕ = atan

(
yf − y0

xf − x0

)
(21)

θ0 = ϕ − B − δ0 (22)

θf = ϕ + A + δf (23)

ψ0 = ϕ − θ0 = δ0 + B (24)

ψf = θf − ϕ = δf + A (25)

η = A + B = δ0 + δf (26)

For the first clothoid set in the generic turn, the deflection is labeled as δ0 and the second clothoid set deflection
is δf . Thus, the total deflection from the initial point to the final point is the sum of all angles δ0 and δf (Eq. (27)).

θf − θ0 = 2(δ0 + δf ) = 2η (27)

Because A, B, δ0, and δf cannot be computed from Fig. 10(b) and Eqs. (21)–(27), they must be fixed before the
construction polylines can be determined. We use Table 1 to summarize the constraints of Eqs. (22)–(26) that restrict
the values for A, B, δ0, and δf . The sums of rows and columns, ψ0, ψf , and η, are functions of inputs in Eqs. (21),
(24), (25), and (26). The horizontal rows sum to A + B = η, (Eq. (26)); δ0 + δf = η, (Eq. (26)); and ψ0 + ψf = 2η.
The vertical columns sum to A + δf = ψf , (Eq. (25)); B + δ0 = ψ0, (Eq. (24)); and η + η = 2η.
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Table 1 Constraints of
Eqs. (22)–(26).

−−
−−

−−
−−A B η

δf δ0 η

ψf ψ0 2η

Table 2 Null Space Added to
Constraints.

−−
−−

−−
−−A + q B − q η

δf − q δ0 + q η

ψf ψ0 2η

While Table 1 constrains the variables A, B, δ0, and δf , there remains one degree of freedom in the system,
A + B = δ0 + δf . To characterize an entire family of solutions, we introduce a null space parameter q. By adding
a null space to Table 1 it allows A, B, δ0, and δf , to be adjusted with respect to each other while maintaining the
integrity of the constraints. Table 2 shows that given a solution (A, B, δ0, δf ) then (A + q, B − q, δ0 + q, δf − q)
is also a solution for any value of q.

To characterize the entire family of solutions we only need to find a single solution within the family. Although
any number of solutions satisfy the equations in Table 1, Eq. (26) immediately suggests two candidate solutions:
A = δ0, B = δf and A = δf , B = δ0. By plugging in the first candidate solution into Eqs. (22)–(26), they produce
to the following equations.

θ0 = ϕ − δ0 − δf (28)

θf = ϕ + δ0 + δf (29)

ψ0 = δ0 + δf (30)

ψf = δ0 + δf (31)

η = δ0 + δf (32)

Table 3 summarizes the constraints for the solution A = δ0 and B = δf . Summing the columns and rows of the
table show that the solution is valid, but only when ψ0 = ψf (Eqs. (30) and (31)). The constraint ψ0 = ψf added to
the other constraints of the table results in a full rank system and is therefore a single point solution.

The next step is to check if the second candidate solution, A = δf and B = δ0, is valid and provides a desirable
family of solutions. This solution reduces Eqs. (22)–(26) to the following equations.

θ0 = ϕ − 2δ0 (33)

θf = ϕ + 2δf (34)

ψ0 = 2δ0 (35)

ψf = 2δf (36)

η = δ0 + δf (37)

Table 3 Constraints for the solution
A = δ0 and B = δf .

−−
−−

−−
−−δ0 δf δ0 + δf = η

δf δo η

ψf ψo ψo + ψf = 2η
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Table 4 Constraints for the solution A = δf ,
B = δ0, and free parameter q.

−−
−−

−−
−−

−−
−−

−ψf

2
+ q

ψ0

2
− q

ψ0 + ψf

2
= η

ψf

2
− q

ψ0

2
+ q

ψ0 + ψf

2
= η

ψf ψo ψo + ψf = 2η

Again, Table 4 summarizes the constraints for the solution A = δf , B = δ0 and free parameter q. Each column
and row of the table sum correctly, therefore A = δf and B = δ0 is a valid solution. Furthermore, there are no other
additional constraints introduced to the system. Thus, the solution A = δf and B = δ0 produces a family of valid
solutions for any value of q.

Using Eqs. (35) and (36) δ0 and δf can be computed and therefore polylines a and b can be found for each solution
within the solution set using the Law of Sines (Eqs. (38) and (39)) on triangle abd in Fig. 10(b). With the length of
constructive polylines a and b computed, the generic turn problem reduces to two clothoid set trajectories. Figure 11

Fig. 11 Algorithm for a symmetric generic turn trajectory. The output of the generic turn algorithm is a trajectory
of four concatenated clothoid turns.
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Fig. 12 (a) Undesirable shallow left turn with a possible collision. (b) A left turn consisting of a curve and a straight
segment to avoid a collision.

Fig. 13 (a) Straight-curve trajectory. (b) Curve-straight trajectory.

outlines the algorithm for the generic turn.

a = d sin(A)

sin(π − η)
= d sin

(
ψf /2 + q

)
sin(η)

(38)

b = d sin(B)

sin(π − η)
= d sin (ψ0/2 − q)

sin(η)
(39)

B. Special Case Maneuvers
Sometimes two clothoid sets produce a trajectory that, although valid, is undesirable, such as in the case of making

a shallow left turn at an intersection. If a second vehicle stops at the left part of the intersection, the motion planner
should not plan a trajectory such that the vehicles collide (Fig. 12(a)). For these types of situations, it is easier to
have special case turns that have a straight line either before or after a clothoid trajectory (Fig. 12(b)). In this section,
we discuss how to create specific maneuvers for an Urban Challenge vehicle.

1. Trajectories for Turns and Straight Segments
The solution A = δf and B = δ0 for any value of q has been shown to be valid (Table 4), but what about the case

when δ0 = 0? By choosing a specific member of the solution set (i.e., by choosing q) the generic turn method can
produce a straight segment along polyline a, followed by one clothoid set using polyline b (Fig. 13(a)). This is called
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Table 5 Constraints for the straight-curve
trajectory for q = −ψ0/2. (see Table 4).

ψf

2
− ψ0

2
ψ0

ψ0 + ψf

2
= η

ψf

2
+ ψ0

2
0

ψ0 + ψf

2
= η

ψf ψ0 ψo + ψf = 2η

Table 6 Constraints for the curve-
straight trajectory for q = ψf /2 (see
Table 4).

ψf

ψ0

2
− ψf

2

ψ0 + ψf

2
= η

0
ψ0

2
+ ψf

2

ψ0 + ψf

2
= η

ψf ψ0 ψo + ψf = 2η

Table 7 Constraints for
the lane change trajectory
for q = 0 and θ0 = θf (see
Table 4).

0 0 0 = η

δf δ0 0 = η

ψf ψ0 0 = η

a straight-curve trajectory and it is produced by setting q = −ψ0/2. Applying q to the generic turn, Table 4, results
in a straight-curve trajectory, Table 5, where δ0 = 0.

The generic turn method can also produce a trajectory consisting of a clothoid set on polyline a, followed by a
straight segment of length b (Fig. 13(b)) by choosing another specific member of the solution set (i.e., by choosing
a different q). This is called a curve-straight trajectory, and is produced by setting q = ψf /2. And again applying q

to the generic turn, Table 4, results in a curve-straight trajectory, Table 6, where δf = 0.
Because the solutions of the maneuvers are members of the solution set of the generic turn, the algorithms of

the straight-curve and curve straight maneuvers consist of a single call to Generic_Turn( ), passing the appropriate
value of q.

2. Lane Change Trajectory
One of the requirements of the DARPA Urban Challenge is that the vehicle must be able to pass another vehicle;

the lane change maneuver does just that. The trajectory is used when the beginning and ending point headings are
the same (i.e., θ0 = θf ) but the points are offset by some x and y distance (Fig. 14). This maneuver allows the
path planner to provide just two points and let the motion planner take care of the details. Without the lane change
maneuver, the path planner would have to provide three points and their headings to complete the maneuver using left
and right turns. Again, because the lane change trajectory is a member of the generic turn solution set, the algorithm
requires a single call to Generic_Turn( ) where θ0 = θf and q = 0 (see Table 7).

3. U-Turn Trajectory
The u-turn is another maneuver required by the Urban Challenge. This trajectory comes about when the total

deflection is approximately π . The actual trajectory is a mirrored clothoid set with d from Eq. (20) passed to
a single call of Clothoid_Turn( ). The trajectory consists of two clothoids (Fig. 15(a)): clothoid (κ0 = 0, α = α,
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Fig. 14 Lane change trajectory maneuver

Fig. 15 (a) U-turn trajectory, (b) U-turn trajectory with an arc.

Fig. 16 Using ψ0 and δ to determine which maneuver to execute.

L = L) + clothoid(κ0 = κ, α = −α, L = L); or two clothoids and an arc between them (Fig 15(b)): clothoid
(κ0 = 0, α = α, L = Lc) + arc(κ0 = κmax, α = 0, L = Larc) + clothoid(κ0 = κmax, α = −α, L = Lc).

C. When to Execute a Trajectory Maneuver
The motion planner must know how to determine which maneuver to execute. One way is to examine the values

and signs of ψ0 and δ (as shown in Fig. 16). For example, for the maneuvers we have discussed previously:
• if ψ0 > 0 and δ > 0 then a left turn is performed,
• if ψ0 < 0 and δ < 0 then a right turn is performed,
• if δ = 0 then a left or right lane change maneuver is executed depending on the sign of ψ0, or
• if ψ0 = π/2 and δ = π then a left u-turn is executed.

Other maneuvers such as U-turn-straight or straight-U-turn trajectories have not been discussed.
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It is important to note that the feasibility of a maneuver depends on the length of d. If d is too small, then it
might not be possible to perform a given maneuver. For example, imagine taking a u-turn to a point only 2 feet
away. Maneuvers depend upon d , ψ0, and δ. We believe that the minimum length d for which a maneuver is feasible
(Eq. (40)) is a function of ψ0 and δ. We do not give this function here but it is a matter of future research.

d ≥ f (δ, ψ0) (40)

Maneuvers that cannot be performed are deemed “Illegal” meaning that either (1) a trajectory for that maneuver
cannot be created that is smooth and drivable, (2) the maneuver is not usually legal or wise to perform in normal
traffic situations (e.g., a right hand u-turn), (3) the maneuver is not simple and may require driving in reverse.

A further advantage of analyzing the legality of maneuvers is that it adds another check between the path planner
and motion planner for drivability and safety. Should the motion planner encounter an illegal maneuver condition, it
returns an error to the path planner stating that the motion planner cannot create a safe and drivable trajectory.

V. Conclusion
We showed that the deflection δ of a clothoid determines its shape, and the curvature κ determines its size. The

x and y components of the clothoid curve and hence the length of the curve, all scale linearly with 1/|κ| while the
shape of the clothoid curve stays the same. Thus, given the deflection of a curve, a clothoid curve can be created, and
then given the length of its associated polyline, the curve can be scaled to the correct size. We have used this principle
to design the “Clothoid_Turn” primitive method that allows us to generate clothoids using constructive polylines.
Using this method, we compute paths that are more complicated between an initial point and final point using only
the coordinates of those points and their associated headings. This is the basis of our motion planner.

Using polylines and the clothoid turn method, we developed a clothoid set consisting of two clothoid curves which
is a turn similar to a “C” path by Reeds and Shepp3 except that it uses clothoid arcs as well as circular arcs. The u-turn
is a special case of this type of path. We also developed a generic turn algorithm that produces a path consisting
of two clothoid sets similar to a “CC” path by Reeds and Shepp.3 We then showed that the straight-curve turn, the
curve-straight turn, and the lane change are all special cases of the generic turn. All of the maneuvers discussed in
Section IV.B are smooth, natural, and drivable trajectories.

For future research, we are developing paths using the clothoid turn method that include more than two polylines
and allow for reversal in direction. We are also trying to characterize feasible paths by finding a function that will
return the minimal length of d required for a valid trajectory (Eq. 40). We are also continuing to develop a set of
heuristics to determine the type of maneuver to perform, and how to parameterize the generic turn for different
maneuvers.
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